Search results for "Hutchinson operator"
showing 3 items of 3 documents
Generalized iterated function systems on the spacel∞(X)
2014
Abstract In the last decades there has been a current effort to extend the classical Hutchinson theory of iterated function systems composed by contractions on a metric space X into itself to more general spaces and infinitely many mappings. In this paper we consider the (countable) iterated function systems consisting of some generalized contractions on the product space X I into X , where I is an arbitrary set of natural numbers. Some approximations of the attractors of the respective iterated function systems are given.
Generalized countable iterated function systems
2011
One of the most common and most general way to generate fractals is by using iterated function systems which consists of a finite or infinitely many maps. Generalized countable iterated function systems (GCIFS) are a generalization of countable iterated function systems by considering contractions from X ? X into X instead of contractions on the metric space X to itself, where (X, d) is a compact metric space. If all contractions of a GCIFS are Lipschitz with respect to a parameter and the supremum of the Lipschitz constants is finite, then the associated attractor depends continuously on the respective parameter.
Iterated function systems and well-posedness
2009
Abstract Fractals and multivalued fractals play an important role in biology, quantum mechanics, computer graphics, dynamical systems, astronomy and astrophysics, geophysics, etc. Especially, there are important consequences of the iterated function (or multifunction) systems in several topics of applied sciences [see for example: El Naschie MS. Iterated function systems and the two-slit experiment of quantum mechanics. Chaos, Solitons & Fractals 1994;4:1965–8; Iovane G. Cantorian spacetime and Hilbert space: Part I-Foundations. Chaos, Solitons & Fractals 2006;28:857–78; Iovane G. Cantorian space-time and Hilbert space: Part II-Relevant consequences. Chaos, Solitons & Fractals 2006;29:1–22;…